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Abstract
In this paper we introduce the concept of QA-mappings and Q-quasi-

antiorders in anti-ordered sets theory. Two isomorphism theorems for
QA-mappings and Q-quasi-antiorders are presented.
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1 Introduction

Let (X,=,#) be a set in the sense of books [1] - [3] and [10], where ” # " is a
binary relation on X which satisfies the following properties:

“(rAa), ety —yta ot =ty Vyts
TFYNYy=2—= 2 # 2,

called apartness (A. Heyting). The apartness is tight (D.Scott) if —(x # y) =
x =y holds. Let Y be a subset of X and x € X. The subset Y of X is strongly
extensional in X if and only if y € Y =y # 2z vz eY ([3,)5]). Ifz € X,
it defined ([2]) z <Y by (Vy € Y)(y # ).

Let f: (X,=,#) — (Y,=,#) be a function. We say that it is:

(a) f is strongly extensional if and only if (Va,b € X)(f(a) # f(b) = a # b);
(b) f is an embedding if and only if (Va,b € X)(a # b= f(a) # f(b)).

Let « € X xY and f C Y X Z be relations. The filled product ([4]) of
relations « and [ is the relation

Bra={(a,c) e X xZ:(¥beY)((a,b) eV (bc) € )}
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A relation ¢ C X x X is a coequality relation on X if and only if holds:

qC#, q¢Cq ", ¢C gx*q.

If ¢ is a coequality relation on set (X, =, #), we can construct factor-set (X/q, =1

,7&1) with
aq =1 bqg <= (a,b) > q, aq #1 bg <= (a,b) € q.

A relation o on X is antiorder ([6],[7]) on X if and only if
a C# aCaxa, ZCaUa™ b (ana™ =0).

Let [ : (X,=,%4,a) — (Y,=,#,3) be a strongly extensional function of
ordered sets under antiorders. f is called isotone if

(Vz,y € S)((z,y) € a = (f(x), f(y)) € B);

f is called reverse isotone if and only if

(Vz,y € S)((f(2), f(y) € B= (z,y) € a).

The strongly extensional mapping f is called an isomorphism if it is injective
and embedding, onto, isotone and reverse isotone. X and Y called isomorphic,
in symbol X = Y| if exists an isomorphism between them. As in [6], a relation
7 C X x X is a quasi-antiorder on X if and only if

T Ca(C#), 7 Crx7, (TN 1 =0).

2 Preliminaries

The first proposition gives some information about quasi-antiorder:

Lemma 2.1 ([7], Lemma 1; [6], Lemma 1) Let (X, =, #) be an anti-ordered
and 7 is a quasi-antiorder on X. Then, the relation ¢ = TUT ! is a coequality
relation on X, and X/q = {aq : a € X} with the anti-order 0, defined by
(ag,bq) € 0 <= (a,b) € 7 (a,b € X), is an anti-ordered set and 7 : X —
X/q, defined by w(a) = aq, is an reverse isotone strongly extensional mapping
from X onto X/q.

Lemma 2.2 ([6], Lemma 2; [9], Theorem 5) Let (X, =,#,a) and (Y,=,#
,B) be anti-ordered sets and ¢ : X — Y an reverse isotone strongly exten-
stonal mapping. Then,

P (B) = {(a,b) € X x X : (¢(a), (b)) € B}
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Y

is a quasi-antiorder on X with = ()U(0 "1 (p)) = Cokery , and X/Cokerp =
Imey as anti-ordered sets.

Lemma 2.3 ([9], Theorem 6) Let (X,=,#,«a) and (Y,=,#,03) be anti-
ordered sets and ¢ : X — 'Y an reverse isotone strongly extensional mapping
and p a quasi-antiorder on X. Then, p 2 ¢ Y(B) if and only if there is a
unique reverse isotone strongly extensional mapping ¥ from X/Cokery to T
such that o = om. Moreover Imy = Ima) .

Lemma 2.4 ([7], Theorem 1; [9], Theorem 8) Let (X, =,#,a) be a set, p
and o quasi-antiorders on X such that o C p. Then, the relation o/p, defined

by
a/p={@(pUp ™), ylpuUp™) € X/(pUp™") x X/(pUp"): (x,y) € 0},

is a quasi-antiorder on X/(pU p™') and

(X/(pUp)/((a/p)U(a/p)) = X/(cUa™)

holds as anti-ordered sets.

Lemma 2.5 ([6], Theorem 3; [7], Theorem 2) Let (X, =,#) be a set with
apartness, o a quasi-antiorder on X. Let A = {7 : 7 is quasi-antiorder on
X such that T C o}. Let B be the set of all quasi-antiorders on X/q, where
q=ocUac™'. Fort € A, we define a relation 7" = {(aq,bq) € X/q x X/q :
(a,b) € 7}. The mapping ¥ : A — B defined by (1) = 77 is strongly
extensional, injective and surjective mapping from A onto B and for m, 7
€ A we have 7 C 1 if and only if (1) C )(72).

3 Definitions and basic properties

Let (X,=,#) be a set with apartness, ¢ be a coequality relation on X and
a be an anti-order relation on X. With it is associated the following relative
((X/q,=1,#1),0) where § = T oa o !, In [§] giving an answer on question
”When the relation 6 , defined above, is an anti-order relation on X/q?” we
find necessary and sufficient conditions that the relation moa o7~ ! is an anti-
order relation on X/q.

Lemma 3.1 ([8], Theorem 4) Let q be a coequality relation in anti-ordered
set (X,=,#,a). Then, the relation § = wo o' is an anti-order relation
on factor-set X/q if and only if the relation T = Kerm o a o Kern is a quasi-
antiorder relation on X such that TUT~ ! = q.
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By definition, for a quasi-antiorder p on an anti-ordered set (X,=,#, )
holds p C «a. Opposite inclusion does not hold, but result in Theorem 3.1 is
a motive for introducing of the following new notion:

Definition 1 Let (X, =, #, a) be an anti-ordered set. A quasi-antiorder p
on X is called a quotient quasi-antiorder (abbreviated to Q-quasi-antiorder)
on X if holds

a C Kermopo Kerr.

Let p: (X,=,#,a) — (Y,=,#,3) be a strongly extensional reverse iso-
tone mapping between anti-ordered sets. Then, by Lemma 2.2, the relation
0 1(B) is a quasi-antiorder on X with ¢ '(p) U (p~1(3)) = Cokery , and
X/Cokery = I'myp as anti-ordered sets. Besides, holds ¢=1(8) C a because
 is a reverse isotone mapping. A little generalization of notion introduced in
the Definition 1 is the following notion:

Definition 2 Let (X,=,#,«a) and (Y,=,#, ) be anti-ordered sets. A
reverse isotone strongly extensional mapping ¢ : X — Y is called a quotient
anti-ordered mapping (abbreviated to QA-mapping) of X to Y if holds

a C Kermogp Y(B)o Kerp.
In the case when ¢ is onto, T is called a quotient anti-ordered set of S.
In the following theorem a characteristic of Q-quasi-antiorder is present:

Theorem 3.2 Let (X, =, #) be an anti-ordered set and p a Q-quasi-antiorder

onX. Thenm: X — X/(pUp™1) is a QA-mapping from X onto X/(pUp™1).
Thus, X/(p U p~t) is a quotient anti-ordered set of X.
Proof: Let p is a Q-quasi-antiorder relation on X. Then ¢ = pU p~! is a
coequality relation on X and 6 on X/q, defined by (aq,bq) € 0 <= (a,b) € p,
is an anti-order on X/q and the mapping 7 : X — X/q, defined by 7(a) =
aq (a € X), is a strongly extensional reverse isotone mapping from X onto
X/q by Lemma 2.1. Since p is a Q - quasi-antiorder relation on X, then the
inclusion @« C Kerm o p o Kerr holds. Besides, since p = 671(0), we have
a C Kermon !(0) o Kerm. Therefore, 7 is a QA - mapping from X onto
X/q. O

In the next assertion we give a connection between QA-mappings and Q-
quasi-antiorders on anti-ordered sets.

Theorem 3.3 Let (X,=,#,a) and (Y,=,#,3) be anti-ordered sets and
¢ : X — Y a strongly extensional reverse isotone QA-mapping. Then,
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0 1(B) is a Q-quasi-antiorder on X with o~ (B) U (p=1(8))~' = Cokery .
Proof: Let ¢ : X — Y be a strongly extensional reverse isotone QA-
mapping. Then, by Lemma 2.2, ¢~!(3) is a quasi-antiorder on X such that
e Y B)U (¢ Y(B)) = Cokerp. Since, by Definition 2, we have a C Kery o
0 Y(B) o Kery , then ¢ 1(3) is Q - quasi-antiorder relation on X. O

4 Isomorphism theorems

In this section we present two isomorphism theorems on QA-mappings and
Q-quasi-antiorder.

Theorem 4.1 (First Isomorphism theorem) Let (X, =, #, «) and (Y, =, #

,B) be anti-ordered sets and ¢ : X — Y a QA-mapping and p a Q-quasi-
antiorder on X. Then, p 2 ¢ X(B) if and only if there is a unique QA-
mapping v : X/(pUp~t) — Y such that o = oxw . Moreover, Imp = Ima).
Proof:
(=) Let (@ D)p 2 ¢ !(B). By Lemma 2.3, there exists a unique reverse
isotone strongly extensional mapping ¢ from X/Cokery to T such that ¢ =
Y om with Ime = Imap . Further on, ¢ = pU p~! is a coequality on X
and m : X — X/q is a strongly extensional reverse isotone QA-mapping
from X onto (X/q,=1,#1,0) by Theorem 3.2. Besides, let (aq,bq) € 6 be an
arbitrary element. Then, by definition of 6, we have (a,b) € p. Since p is a
Q-quasi-antiorder on X and ¢ is QA-mapping, the inclusion

p CaC Kerpop (8)oKerg

is valid. Thus, there exist elements z,y € X such that (a,z) € Kery and
(y,b) € Kery , i.e. there exist elements x,y € X such that

ola) = p(x) A (z,y) € o (B) A @y) = @(b)

i.e. we have element z,y € X such that

Y(m(a) = (a(@)) A (n(z),7(y)) € ¥1(B) A ¢(r(y)) = (7 (D).

Finally, we have

(m(a), (b)) € Kery o™ (3) o Ker.
So, the inclusion
0 C Kergoyp™'(3) o Kery

is proved. Therefore, ¢ : (X/q,=1,#1,0) — (Y,=,#, 3) is QA-mapping.
(«<=) This part of proof immediately follows from Lemma 2.3. O
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Theorem 4.2 (Second Isomorphism Theorem) Let (X, =, #,«) be a set,
p and o Q-quasi-antiorders on X such that o C p. Then the relation o/p
defined by

a/p={(z(pUp™),y(pUp™)) € X/(pUp™) x X/(pUp™"): (z,y) € 0},

is a Q-quasi-antiorder on X/(pU p~') and

(X/(pUp)/((a/pI)(o/p)") = X/(eUc™)

holds as anti-ordered sets.
Proof: By Lemma 2.4, the relation o/p is a quasi-antiorder on (X/(pUp™1), =
s 7é1, 9) and

(X/(pUp™)/((e/p)U(a/p) ") = X/(cUa™)

holds as anti-ordered sets. Let m; be the natural strongly extensional reverse
isotone mapping from (X/(pU p~') onto (X/(pUp~)/((c/p) U (a/p)~"). We
need to prove only that o/p is Q-quasi-antiorder on X/(pU p~!), i.e. we need
to prove

0 C Kermoo/po Kerm.

Let q=pUp L p=cUo ' t=(c/p)U(c/p)~! and (aq,bq) be an arbitrary
element of #. Then, by definition of 0, (a,b) € p C a . Since o is a Q-quasi-
antiorder on X, we have

(a,b) € p Ca C Kern, oo o Kern,.
Thus, there exist elements z,y of X such that
(@) =2 mo(2) A (2,) € 0 A () = 7o b),
i.e. such that
(a,z)>=x1p 2 o A (zq,yq) € a/p A (y,b) 1 psupseteq o.

Further on, let (ug,vq) be an arbitrary element of ¢, i.e. let (u,v) be an
arbitrary element of o . Thus, we have ((u,a) € bo V (a,z) € 0 V (x,v) € 0).
So, we conclude

((ug)t #3 (x@)t) N ((zq)t #3 (vq)t)
because the case (a,z) € ¢ C pis impossible. Therefore, we have (aq, zq) > t.
Analogously, we have that (yq,bq) € t also. Finally, we have

(aq)t =3 (zq)t A (zq,yq) € a/p N (yq)t =5 (bg)t,

i.e. we have (aq,bq) € Kermyoo/po Kerm,. O
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