Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 14, 695 - 701

Isomorphism Theorems for QA-Mappings

Daniel Abraham Romano¹

Department of Mathematics and Informatics Banja Luka University, 2, Mladen Stojanovic Street 78000 Banja Luka, Bosnia and Herzegovina bato49@hotmail.com

Abstract

In this paper we introduce the concept of QA-mappings and Q-quasiantiorders in anti-ordered sets theory. Two isomorphism theorems for QA-mappings and Q-quasi-antiorders are presented.

Mathematics Subject Classification: Primary: 03F65; Secondary: 03E04, 03E99

Keywords: Constructive mathematics, set with apartness, anti-order, quasi-antiorder, isomorphism, QA-mapping and Q-quasi-antiorder

1 Introduction

Let $(X, =, \neq)$ be a set in the sense of books [1] - [3] and [10], where " \neq " is a binary relation on X which satisfies the following properties:

$$\neg (x \neq x), x \neq y \Longrightarrow y \neq x, x \neq z \Longrightarrow x \neq y \lor y \neq z, x \neq y \land y = z \Longrightarrow x \neq z,$$

called *apartness* (A. Heyting). The apartness is *tight* (D.Scott) if $\neg (x \neq y) \Longrightarrow x = y$ holds. Let Y be a subset of X and $x \in X$. The subset Y of X is *strongly* extensional in X if and only if $y \in Y \Longrightarrow y \neq x \lor x \in Y$ ([3],[5]). If $x \in X$, it defined ([2]) $x \bowtie Y$ by $(\forall y \in Y)(y \neq x)$.

Let $f: (X, =, \neq) \longrightarrow (Y, =, \neq)$ be a function. We say that it is: (a) f is strongly extensional if and only if $(\forall a, b \in X)(f(a) \neq f(b) \Longrightarrow a \neq b)$; (b) f is an embedding if and only if $(\forall a, b \in X)(a \neq b \Longrightarrow f(a) \neq f(b))$. Let $\alpha \subseteq X \times Y$ and $\beta \subseteq Y \times Z$ be relations. The filled product ([4]) of relations α and β is the relation

 $\beta \ast \alpha = \{ (a,c) \in X \times Z : (\forall b \in Y) ((a,b) \in \alpha \lor (b,c) \in \beta) \}.$

¹Supported by the Ministry of sciences and technology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina.

A relation $q \subseteq X \times X$ is a *coequality* relation on X if and only if holds:

$$q \subseteq \neq, \ q \subseteq q^{-1}, \ q \subseteq q * q.$$

If q is a coequality relation on set $(X, =, \neq)$, we can construct factor-set $(X/q, =_1, \neq_1)$ with

$$aq =_1 bq \iff (a, b) \bowtie q, \ aq \neq_1 bq \iff (a, b) \in q.$$

A relation α on X is *antiorder* ([6],[7]) on X if and only if

$$\alpha \subseteq \neq, \ \alpha \subseteq \alpha * \alpha, \ \neq \subseteq \alpha \cup \alpha^{-1}, (\alpha \cap \alpha^{-1} = \emptyset).$$

Let $f : (X, =, \neq, \alpha) \longrightarrow (Y, =, \neq, \beta)$ be a strongly extensional function of ordered sets under antiorders. f is called *isotone* if

$$(\forall x, y \in S)((x, y) \in \alpha \Longrightarrow (f(x), f(y)) \in \beta);$$

f is called *reverse isotone* if and only if

$$(\forall x, y \in S)((f(x), f(y)) \in \beta \Longrightarrow (x, y) \in \alpha)$$

The strongly extensional mapping f is called an *isomorphism* if it is injective and embedding, onto, isotone and reverse isotone. X and Y called *isomorphic*, in symbol $X \cong Y$, if exists an isomorphism between them. As in [6], a relation $\tau \subseteq X \times X$ is a *quasi-antiorder* on X if and only if

$$\tau \subseteq \alpha (\subseteq \neq), \ \tau \subseteq \tau * \tau, \ (\tau \cap \tau^{-1} = \emptyset).$$

2 Preliminaries

The first proposition gives some information about quasi-antiorder:

Lemma 2.1 ([7], Lemma 1; [6], Lemma 1) Let $(X, =, \neq)$ be an anti-ordered and τ is a quasi-antiorder on X. Then, the relation $q = \tau \cup \tau^{-1}$ is a coequality relation on X, and $X/q = \{aq : a \in X\}$ with the anti-order θ , defined by $(aq, bq) \in \theta \iff (a, b) \in \tau \ (a, b \in X)$, is an anti-ordered set and $\pi : X \longrightarrow$ X/q, defined by $\pi(a) = aq$, is an reverse isotone strongly extensional mapping from X onto X/q.

Lemma 2.2 ([6], Lemma 2; [9], Theorem 5) Let $(X, =, \neq, \alpha)$ and $(Y, =, \neq, \beta)$ be anti-ordered sets and $\varphi : X \longrightarrow Y$ an reverse isotone strongly extensional mapping. Then,

$$\varphi^{-1}(\beta) = \{(a,b) \in X \times X : (\varphi(a),\varphi(b)) \in \beta\}$$

is a quasi-antiorder on X with $\varphi^{-1}(\varphi) \cup (\varphi^{-1}(\varphi)) = Coker\varphi$, and $X/Coker\varphi \cong Im\varphi$ as anti-ordered sets.

Lemma 2.3 ([9], Theorem 6) Let $(X, =, \neq, \alpha)$ and $(Y, =, \neq, \beta)$ be antiordered sets and $\varphi : X \longrightarrow Y$ an reverse isotone strongly extensional mapping and ρ a quasi-antiorder on X. Then, $\rho \supseteq \varphi^{-1}(\beta)$ if and only if there is a unique reverse isotone strongly extensional mapping ψ from X/Coker φ to T such that $\varphi = \psi \circ \pi$. Moreover $Im\varphi = Im\psi$.

Lemma 2.4 ([7], Theorem 1; [9], Theorem 8) Let $(X, =, \neq, \alpha)$ be a set, ρ and σ quasi-antiorders on X such that $\sigma \subseteq \rho$. Then, the relation σ/ρ , defined by

$$\sigma/\rho = \{ (x(\rho \cup \rho^{-1}), y(\rho \cup \rho^{-1})) \in X/(\rho \cup \rho^{-1}) \times X/(\rho \cup \rho^{-1}) : (x, y) \in \sigma \},$$

is a quasi-antiorder on $X/(\rho \cup \rho^{-1})$ and

$$(X/(\rho\cup\rho^{-1})/((\sigma/\rho)\cup(\sigma/\rho)^{-1})\cong X/(\sigma\cup\sigma^{-1})$$

holds as anti-ordered sets.

Lemma 2.5 ([6], Theorem 3; [7], Theorem 2) Let $(X, =, \neq)$ be a set with apartness, σ a quasi-antiorder on X. Let $\mathbf{A} = \{\tau : \tau \text{ is quasi-antiorder on} X \text{ such that } \tau \subseteq \sigma\}$. Let \mathbf{B} be the set of all quasi-antiorders on X/q, where $q = \sigma \cup \sigma^{-1}$. For $\tau \in \mathbf{A}$, we define a relation $\tau^{"} = \{(aq, bq) \in X/q \times X/q : (a, b) \in \tau\}$. The mapping $\psi : \mathbf{A} \longrightarrow \mathbf{B}$ defined by $\psi(\tau) = \tau^{"}$ is strongly extensional, injective and surjective mapping from \mathbf{A} onto \mathbf{B} and for $\tau_1, \tau_2 \in \mathbf{A}$ we have $\tau_1 \subseteq \tau_2$ if and only if $\psi(\tau_1) \subseteq \psi(\tau_2)$.

3 Definitions and basic properties

Let $(X, =, \neq)$ be a set with apartness, q be a coequality relation on X and α be an anti-order relation on X. With it is associated the following relative $((X/q, =_1, \neq_1), \theta)$ where $\theta = \pi \circ \alpha \circ \pi^{-1}$. In [8] giving an answer on question "When the relation θ , defined above, is an anti-order relation on X/q?" we find necessary and sufficient conditions that the relation $\pi \circ \alpha \circ \pi^{-1}$ is an anti-order relation on X/q.

Lemma 3.1 ([8], Theorem 4) Let q be a coequality relation in anti-ordered set $(X, =, \neq, \alpha)$. Then, the relation $\theta = \pi \circ \alpha \circ \pi^{-1}$ is an anti-order relation on factor-set X/q if and only if the relation $\tau = Ker\pi \circ \alpha \circ Ker\pi$ is a quasiantiorder relation on X such that $\tau \cup \tau^{-1} = q$. By definition, for a quasi-antiorder ρ on an anti-ordered set $(X, =, \neq, \alpha)$ holds $\rho \subseteq \alpha$. Opposite inclusion does not hold, but result in Theorem 3.1 is a motive for introducing of the following new notion:

Definition 1 Let $(X, =, \neq, \alpha)$ be an anti-ordered set. A quasi-antiorder ρ on X is called a *quotient quasi-antiorder* (abbreviated to Q-quasi-antiorder) on X if holds

$$\alpha \subseteq Ker\pi \circ \rho \circ Ker\pi.$$

Let $\varphi : (X, =, \neq, \alpha) \longrightarrow (Y, =, \neq, \beta)$ be a strongly extensional reverse isotone mapping between anti-ordered sets. Then, by Lemma 2.2, the relation $\varphi^{-1}(\beta)$ is a quasi-antiorder on X with $\varphi^{-1}(\varphi) \cup (\varphi^{-1}(\beta)) = Coker\varphi$, and $X/Coker\varphi \cong Im\varphi$ as anti-ordered sets. Besides, holds $\varphi^{-1}(\beta) \subseteq \alpha$ because φ is a reverse isotone mapping. A little generalization of notion introduced in the Definition 1 is the following notion:

Definition 2 Let $(X, =, \neq, \alpha)$ and $(Y, =, \neq, \beta)$ be anti-ordered sets. A reverse isotone strongly extensional mapping $\varphi : X \longrightarrow Y$ is called a *quotient anti-ordered mapping* (abbreviated to QA-mapping) of X to Y if holds

$$\alpha \subseteq Ker\pi \circ \varphi^{-1}(\beta) \circ Ker\varphi.$$

In the case when φ is onto, T is called a *quotient anti-ordered set* of S.

In the following theorem a characteristic of Q-quasi-antiorder is present:

Theorem 3.2 Let $(X, =, \neq)$ be an anti-ordered set and ρ a Q-quasi-antiorder on X. Then $\pi : X \longrightarrow X/(\rho \cup \rho^{-1})$ is a QA-mapping from X onto $X/(\rho \cup \rho^{-1})$. Thus, $X/(\rho \cup \rho^{-1})$ is a quotient anti-ordered set of X.

Proof: Let ρ is a Q-quasi-antiorder relation on X. Then $q = \rho \cup \rho^{-1}$ is a coequality relation on X and θ on X/q, defined by $(aq, bq) \in \theta \iff (a, b) \in \rho$, is an anti-order on X/q and the mapping $\pi : X \longrightarrow X/q$, defined by $\pi(a) = aq \ (a \in X)$, is a strongly extensional reverse isotone mapping from X onto X/q by Lemma 2.1. Since ρ is a Q - quasi-antiorder relation on X, then the inclusion $\alpha \subseteq Ker\pi \circ \rho \circ Ker\pi$ holds. Besides, since $\rho = \theta^{-1}(\theta)$, we have $\alpha \subseteq Ker\pi \circ \pi^{-1}(\theta) \circ Ker\pi$. Therefore, π is a QA - mapping from X onto X/q. \Box

In the next assertion we give a connection between QA-mappings and Qquasi-antiorders on anti-ordered sets.

Theorem 3.3 Let $(X, =, \neq, \alpha)$ and $(Y, =, \neq, \beta)$ be anti-ordered sets and $\varphi : X \longrightarrow Y$ a strongly extensional reverse isotone QA-mapping. Then,

 $\varphi^{-1}(\beta)$ is a Q-quasi-antiorder on X with $\varphi^{-1}(\beta) \cup (\varphi^{-1}(\beta))^{-1} = Coker\varphi$. **Proof**: Let $\varphi : X \longrightarrow Y$ be a strongly extensional reverse isotone QAmapping. Then, by Lemma 2.2, $\varphi^{-1}(\beta)$ is a quasi-antiorder on X such that $\varphi^{-1}(\beta) \cup (\varphi^{-1}(\beta)) = Coker\varphi$. Since, by Definition 2, we have $\alpha \subseteq Ker\varphi \circ \varphi^{-1}(\beta) \circ Ker\varphi$, then $\varphi^{-1}(\beta)$ is Q - quasi-antiorder relation on X. \Box

4 Isomorphism theorems

In this section we present two isomorphism theorems on QA-mappings and Q-quasi-antiorder.

Theorem 4.1 (First Isomorphism theorem) Let $(X, =, \neq, \alpha)$ and $(Y, =, \neq, \beta)$ be anti-ordered sets and $\varphi : X \longrightarrow Y$ a QA-mapping and ρ a Q-quasiantiorder on X. Then, $\rho \supseteq \varphi^{-1}(\beta)$ if and only if there is a unique QAmapping $\psi : X/(\rho \cup \rho^{-1}) \longrightarrow Y$ such that $\varphi = \psi \circ \pi$. Moreover, $Im\varphi = Im\psi$. **Proof**:

 (\Longrightarrow) Let $(\alpha \supseteq)\rho \supseteq \varphi^{-1}(\beta)$. By Lemma 2.3, there exists a unique reverse isotone strongly extensional mapping ψ from $X/Coker\varphi$ to T such that $\varphi = \psi \circ \pi$ with $Im\varphi = Im\psi$. Further on, $q = \rho \cup \rho^{-1}$ is a coequality on Xand $\pi : X \longrightarrow X/q$ is a strongly extensional reverse isotone QA-mapping from X onto $(X/q, =_1, \neq_1, \theta)$ by Theorem 3.2. Besides, let $(aq, bq) \in \theta$ be an arbitrary element. Then, by definition of θ , we have $(a, b) \in \rho$. Since ρ is a Q-quasi-antiorder on X and φ is QA-mapping, the inclusion

$$\rho \subseteq \alpha \subseteq Ker\varphi \circ \varphi^{-1}(\beta) \circ Ker\varphi$$

is valid. Thus, there exist elements $x, y \in X$ such that $(a, x) \in Ker\varphi$ and $(y, b) \in Ker\varphi$, i.e. there exist elements $x, y \in X$ such that

$$\varphi(a) = \varphi(x) \land (x, y) \in \varphi^{-1}(\beta) \land \varphi(y) = \varphi(b)$$

i.e. we have element $x, y \in X$ such that

$$\psi(\pi(a)) = \psi(\pi(x)) \land (\pi(x), \pi(y)) \in \psi^{-1}(\beta) \land \psi(\pi(y)) = \psi(\pi(b)).$$

Finally, we have

$$(\pi(a), \pi(b)) \in Ker\psi \circ \psi^{-1}(\beta) \circ Ker\psi.$$

So, the inclusion

$$\theta \subseteq Ker\psi \circ \psi^{-1}(\beta) \circ Ker\psi$$

is proved. Therefore, $\psi : (X/q, =_1, \neq_1, \theta) \longrightarrow (Y, =, \neq, \beta)$ is QA-mapping. (\Leftarrow) This part of proof immediately follows from Lemma 2.3. \Box **Theorem 4.2** (Second Isomorphism Theorem) Let $(X, =, \neq, \alpha)$ be a set, ρ and σ Q-quasi-antiorders on X such that $\sigma \subseteq \rho$. Then the relation σ/ρ , defined by

$$\sigma/\rho = \{(x(\rho \cup \rho^{-1}), y(\rho \cup \rho^{-1})) \in X/(\rho \cup \rho^{-1}) \times X/(\rho \cup \rho^{-1}) : (x, y) \in \sigma\},$$

is a Q-quasi-antiorder on $X/(\rho \cup \rho^{-1})$ and

$$(X/(\rho\cup\rho^{-1})/((\sigma/\rho\cup)(\sigma/\rho)^{-1})\cong X/(\sigma\cup\sigma^{-1})$$

holds as anti-ordered sets.

Proof: By Lemma 2.4, the relation σ/ρ is a quasi-antiorder on $(X/(\rho \cup \rho^{-1}), =_1, \neq_1, \theta)$ and

$$(X/(\rho \cup \rho^{-1})/((\sigma/\rho) \cup (\sigma/\rho)^{-1}) \cong X/(\sigma \cup \sigma^{-1})$$

holds as anti-ordered sets. Let π_t be the natural strongly extensional reverse isotone mapping from $(X/(\rho \cup \rho^{-1}))$ onto $(X/(\rho \cup \rho^{-1})/((\sigma/\rho) \cup (\sigma/\rho)^{-1}))$. We need to prove only that σ/ρ is Q-quasi-antiorder on $X/(\rho \cup \rho^{-1})$, i.e. we need to prove

$$\theta \subseteq Ker\pi_t \circ \sigma / \rho \circ Ker\pi_t.$$

Let $q = \rho \cup \rho^{-1}$, $p = \sigma \cup \sigma^{-1}$, $t = (\sigma/\rho) \cup (\sigma/\rho)^{-1}$ and (aq, bq) be an arbitrary element of θ . Then, by definition of θ , $(a, b) \in \rho \subseteq \alpha$. Since σ is a Q-quasi-antiorder on X, we have

$$(a,b) \in \rho \subseteq \alpha \subseteq Ker\pi_{\sigma} \circ \sigma \circ Ker\pi_{\sigma}.$$

Thus, there exist elements x, y of X such that

$$\pi_{\sigma}(a) =_2 \pi_{\sigma}(x) \land (x, y) \in \sigma \land \pi_{\sigma}(y) =_2 \pi_{\sigma}(b),$$

i.e. such that

$$(a,x) \bowtie p \supseteq \sigma \land (xq,yq) \in \sigma/\rho \land (y,b) \bowtie psupseteq \sigma.$$

Further on, let (uq, vq) be an arbitrary element of t, i.e. let (u, v) be an arbitrary element of σ . Thus, we have $((u, a) \in b\sigma \lor (a, x) \in \sigma \lor (x, v) \in \sigma)$. So, we conclude

$$((uq)t \neq_3 (xq)t) \land ((xq)t \neq_3 (vq)t)$$

because the case $(a, x) \in \sigma \subseteq p$ is impossible. Therefore, we have $(aq, xq) \bowtie t$. Analogously, we have that $(yq, bq) \in t$ also. Finally, we have

$$(aq)t =_3 (xq)t \land (xq, yq) \in \sigma/\rho \land (yq)t =_3 (bq)t,$$

i.e. we have $(aq, bq) \in Ker\pi_t \circ \sigma / \rho \circ Ker\pi_t$. \Box

References

- E. Bishop: Foundations of Constructive Analysis; McGraw-Hill, New York 1967.
- [2] D. S. Bridges and F. Richman, Varieties of Constructive Mathematics, London Mathematical Society Lecture Notes 97, Cambridge University Press, Cambridge, 1987
- [3] R. Mines, F. Richman and W. Ruitenburg: A Course of Constructive Algebra, Springer, New York 1988
- [4] D.A.Romano: On construction of maximal coequality relation and its applications; In : Proceedings of 8th international conference on Logic and Computers Sciences "LIRA '97", Novi Sad, September 1-4, 1997, (Editors: R.Tosic and Z.Budimac), Institute of Mathematics, Novi Sad 1997, 225-230
- [5] D. A. Romano: Some Relations and Subsets of Semigroup with Apartness Generated by the Principal Consistent Subset; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 13(2002), 7-25.
- [6] D. A. Romano: A Note on Quasi-antiorder in Semigroup; Novi Sad J. Math., 37(1) (2007), 3-8
- [7] D.A.Romano: The Second Isomorphism Theorem on Ordered Set under Antiorders; Kragujevac J. Math., 30(2007), 235-242
- [8] D.A.Romano: A Remark on Coequality Relation on Anti-ordered Set; International Journal of Contemporary Mathematical Sciences, 3(1)(2008), 43-48
- [9] D.A.Romano: On Quasi-antiorder Relation on Semigroup; 1-9 pp. (Submitted in a journal on 02.09.2006)
- [10] A. S. Troelstra and D. van Dalen: Constructivism in Mathematics, An Introduction; North-Holland, Amsterdam 1988.

Received: December 4, 2007